Systéme de Vote Electronique Sécurisé

Cryptographie Post-Quantique Hybride avec Blockchain PoA

Rapport Technique Détaillé
EPITA - Cryptographie Industrielle Avancée (CIA)

Auteurs : Paul Roost, Alexis Bruneteau

Novembre 2025

Résumé du Projet

Ce rapport documente la conception, I'implémentation et la validation d’un systéme de vote
électronique entierement fonctionnel utilisant une cryptographie post-quantique hybride conforme aux
normes NIST (FIPS 203/204/205). Le systéme adresse les défis critiques de sécurité du vote en ligne :
fraude, intimidation, anonymat, intégrité et immuabilité.

1. Introduction et Contexte

1.1 Motivations Techniques

Les systemes de vote électronique présentent des défis de sécurité distincts des autres applications. Le
vote doit garantir :

¢ Fraude électorale : Aucune modification post-vote via blockchain SHA-256
e Anonymat : Impossibilité relier électeur vers vote via chiffrement ElGamal

o Intégrité : Vérification via chaine de hachage immuable

« Non-répudiation : Electeur ne peut nier avoir voté via signatures hybrides
« Coercion-resistance : Electeur ne peut prouver son vote a tiers

1.2 Approche Hybride Post-Quantique

Notre systéeme combine :

e Signatures : RSA-PSS 2048 + Dilithium (ML-DSA-65)
o Chiffrement : ElGamal + Kyber (ML-KEM-768)

o Hachage : SHA-256 (quantum-safe)

¢ Symétrique : AES-256-GCM (résiste a Grover)

Defense-in-depth : Méme si RSA ou ElGamal cassés, Dilithium et Kyber restent sfirs.

1.3 Stack Technologique

e Backend : Python 3.12 + FastAPI 4+ SQLAlchemy + MariaDB
e Frontend : Next.js 15 + React 18 + TypeScript

¢ Blockchain : Proof-of-Authority (PoA) + 3 validators

¢ Cryptographie : libogs (ML-DSA-65, ML-KEM-768)

o Déploiement : Docker Compose (7 services)

2. Architecture Systeme

2.1 Composants Matériels
Architecture Client-Serveur avec Blockchain :

Frontend (Next.js 15) - Backend (FastAPI) - MariaDB
1
Blockchain (PoA)
1
Validators (3x)
2.2 Base de Données

SQLAlchemy Models avec contraintes ACID :

Voters : email unique, citizen_ id unique, password bcrypt
Elections : nom, description, dates, clés publiques

Candidates : nom, election_id (FK)

Votes : UNIQUE(voter_id, election_id), encrypted_vote (BLOB)

Contrainte critique : Un électeur ne peut voter qu’une fois par élection (vérifiée BD + code).

2.3 Blockchain PoA

Structure bloc :

Block {

index: int

prev_hash: SHA-256

timestamp: Unix time

encrypted votes: List[Dict]

miner address: validator ID

signature: Dilithium (3309 bytes)
}

Consensus simple : Round-robin entre 3 validators.

Immuabilité : Modification bloc — tous hashes invalides — détection garantie.

3. Cryptographie Hybride

3.1 ElGamal : Addition Homomorphe
Propriété fondamentale pour dépouillement sécurisé :
E(m1) times E(m2) = E(ml + m2) mod p
Utilisation :

Chiffrement
(cl, c2) = (g°r mod p, m * h”r mod p)

Dépouillement sans déchiffrement intermédiaire
encrypted total = product(E(vote i) for each vote)

Déchiffrement final une seule fois
total = c2 / c1”x mod p

Sécurité : Basée sur Decisional Diffie-Hellman (DDH).
3.2 Dilithium (ML-DSA-65)
Signature post-quantique NIST FIPS 204 approuvée.

Parametres :

e Dimension : 4

o Sécurité : 192 bits classique, 64 bits quantique
e Clé publique : 1312 bytes

e Signature : 3309 bytes

e Temps : lms/signature

Utilisation : Signature chaque bloc blockchain + chaque vote.

Sécurité : Basée sur Module-LWE (Learning With Errors).

3.3 Kyber (ML-KEM-768)
Encapsulation post-quantique NIST FIPS 203 approuvée.

Parametres :

Sécurité : 192 bits classique, 128 bits quantique
o Clé publique : 1184 bytes

o Ciphertext : 1088 bytes

o Shared secret : 32 bytes

Utilisation : Génération clé hybride pour AES-256-GCM.
Sécurité : IND-CCA2 basée sur Module-LWE.

3.4 AES-256-GCM

Chiffrement symétrique du bulletin apres dérivation clé hybride.

Clé : 256 bits (32 bytes) IV : 96 bits (12 bytes) Mode : GCM (confidentialité + authentification) Tag :
128 bits

Quantum-safe : AES non-ciblé par Grover (colit 27128 requétes toujours prohibitif).

4. Flux du Vote (6 Phases)

4.1 Phase 1 : Inscription
Entrée : email, password, nom, prénom, CNI
Actions serveur :

¢ Valider contraintes : email unique, password policy (84 chars)
o Générer clés :
» RSA 2048 (clé publique 294 bytes)
» Dilithium ML-DSA-65 (clé publique 1312 bytes)
» ElGamal (clés publique 1024 bytes)
» Kyber ML-KEM-768 (clé publique 1184 bytes)
e Hash password : berypt 12 rounds
e Stocker en BD : voter_id, email, password__hash, clés publiques

Résultat : JWT token + voter id

4.2 Phase 2 : Authentification
Entrée : email + password
Actions serveur :

o Lookup voter par email
o berypt.verify(password)
o JWT . sign(payload={voter_id, exp=now+30min})

JWT inclut : voter_id, timestamp d’expiration, signature HMAC-SHA256

4.3 Phase 3 : Consultation Elections
Endpoint : GET /api/elections/active (requiert JWT valide)

Retourne : Liste élections actives (start <= now < end) Chaque élection inclut : ID, nom, candidats,
clés publiques

4.4 Phase 4 : Vote Chiffré
Processus cryptographique coté client :
¢ Obtenir clés publiques élection (ElGamal, Kyber)

o Chiffrer candidate id avec ElGamal :
» Générer r aléatoire
» (c1, ¢2) = (¢ r mod p, candidate_id times h™r mod p)

o Encapsuler clé avec Kyber :
» kyber__ct, kyber_ss = Kyber.encap(kyber_ pk)
e Dériver clé symétrique hybride :

» symmetric_key = SHA256(kyber_ss || c1 || ¢2)

o Chiffrer vote avec AES-256-GCM :
» vote_data = {election_id, (c1,c2), timestamp}
» iv = random(12 bytes)
» ciphertext = AES_ GCM.encrypt(symmetric_ key, iv, vote_data)

o Signer avec Dilithium :
» sig_ dilithium = Dilithium.sign(SHA256(ciphertext || iv))

e Signer avec RSA-PSS 2048 :
» sig rsa = RSA_PSS.sign(SHA256(ciphertext || iv))

o Transmettre serveur : ciphertext, iv, signatures hybrides, kyber_ct

Vérification serveur (6 étapes) :

o Vérifier JWT (authenticité électeur)

o Vérifier non-double-vote (DB constraint)
o Vérifier signature Dilithium

e Vérifier signature RSA

o Déchiffrer avec clé privée Kyber serveur
¢ Enregistrer vote chiffré en BD

4.5 Phase 5 : Dépouillement

Pour chaque candidat :

votes chiffrés = [E(vl), E(v2), ..., E(vn)]
total chiffré = E(vl) times E(v2) * ... * E(vn)
= E(vl + v2 + ... + vn)

total clair = Decrypt(total chiffré, clé privée trésorier)
Avantage : Aucun vote individuel jamais déchiffré.

Sécurité : ElGamal IND-CPA + propriété homomorphe.

4.6 Phase 6 : Vérification Blockchain
Vérifier intégrité chaine :

Pour chaque bloc :
Recalculer hash = SHA256(bloc)
Vérifier hash correspond
Vérifier prev_hash de bloc i = hash de bloc i-1
Vérifier signature Dilithium du mineur

Si un vote modifié - hash change - chaine invalide

5. Sécurité Cryptographique

5.1 Confidentialité (Semantic Security)
Définition : Adversaire ne peut pas distinguer E(m0) vs E(m1).
Propriété ElGamal : IND-CPA sécurisé si DDH difficile.
Propriété Kyber : IND-CCA2 sécurisé (approuvé NIST).

Résultat : Vote chiffré incompréhensible sans clé privée trésorier.

5.2 Intégrité (EUF-CMA)

Définition : Adversaire ne peut pas forger signature sans clé privée.
Propriété Dilithium : EUF-CMA sécurisé (NIST FIPS 204).
Propriété RSA-PSS : EUF-CMA sécurisé.

Résultat : Vote modifié — signatures invalides détectées.

5.3 Non-Répudiation
Propriété : Electeur ne peut nier avoir voté (signatures hybrides).
Mécanisme : Clés privées RSA + Dilithium uniques par électeur.

Signature vote = preuve que électeur a signé.

5.4 Authentification
Propriété : Serveur vérifie identité électeur.

Mécanismes :

o JWT expiration 30 min
e bcerypt password hashing
e CNI unique identifiant

o IP logging (audit trail)

5.5 Anonymat (Privacy)

Propriété : Impossible relier électeur vers vote final.

Mécanismes :

e Vote chiffré (contient seulement candidate id)
e Séparation identité-vote en BD

e Transaction ID aléatoire (pas séquentiel)

Limitation : Audit log détaillé permet retrouver si analyse conjointe.

5.6 Protection Quantique
Defense-in-depth hybride :

Signatures : RSA-PSS + Dilithium
e Si RSA cassé par Shor — Dilithium encore siir
o Nécessite casser LES DEUX

Chiffrement : ElGamal + Kyber
e Si ElGamal cassé — Kyber encore sir
e Nécessite casser LES DEUX

Symétrique : AES-256
¢ Grover réduit a 27128 requétes
o Toujours impraticable

6. Analyse des Menaces

6.1 Fraude Electorale
Menace : Modification votes aprés soumission.

Mitigation :

o Vote chiffré ElGamal (confidentiel)

« Signature Dilithium (intégrité)

o Blockchain SHA-256 (immuabilité)

o Modification — tous hashes invalides

Sécurité : Garantie cryptographique.

6.2 Double-Vote
Menace : Electeur vote 2 fois.

Mitigation :

e BD Constraint : UNIQUE(voter_id, election_ id)
e Code check : Vérifier vote existant avant insertion
¢ Implémenté 2 niveaux (BD + code)

Sécurité : Imposible sans acces BD direct.

6.3 Intimidation
Menace : Tiers force électeur a voter pour X.

Mitigation :

o Vote chiffré (tiers ne peut vérifier le choix)

e Anonymat (tiers ne peut associer voter a choix)
e Secret du vote assuré par processus isolé

Limitation : Si tiers observe physiquement le processus — probléme incontournable.

Solution : Isolement physique du scrutin (cabine de vote traditionnelle).

6.4 Usurpation d’Identité
Menace : Attaquant vote a la place d’électeur.

Mitigation :

o JWT expiration 30 min

e berypt 12 rounds (password)

e CNI unique

¢ Signatures hybrides (nécessite clés privées)

Sécurité : Tres faible probabilité.
6.5 Compromis BD
Menace : Admin BD modifie votes.

Mitigation :

o Votes chiffrés (illisibles)

o Hachage ballot pour audit

o Blockchain externe (immuable)
o Logs d’acces BD

Sécurité : Détection garantie, modification cofiteuse.
6.6 Attaque Quantique

Menace : Ordinateur quantique casse RSA/ElGamal.

Mitigation : Hybride defense-in-depth

e Signatures : RSA + Dilithium
o Chiffrement : ElGamal + Kyber
e Nécessite casser LES DEUX

Sécurité : Quantum-resistant.

7. Implémentation Détaillée

7.1 Backend Architecture
Structure FastAPI :

backend/

F— main.py # App FastAPI

F— models.py # SQLAlchemy ORM
F— schemas.py # Pydantic schemas
— services.py # Business logic
— dependencies.py # IWT, DB dependencies
F— routes/

| — auth.py # Register, Login

| |— elections.py # Get elections

| L— votes.py # Submit, History
F— crypto/

| — encryption.py # ElGamal + AES

| — signatures.py # RSA + Dilithium
| — hashing.py # SHA-256

| L— pqc.py # Kyber, Dilithium
F— blockchain.py # Blockchain local
L

blockchain client.py # PoA communication

7.2 Database Models

class Voter:
id: int (PK)
email: str (UNIQUE)
citizen id: str (UNIQUE)
password hash: str (bcrypt)
first name, last name: str
public key rsa, dilithium, elgamal, kyber: bytes

class Election:
id: int (PK)
name, description: str
start date, end date: datetime
public key elgamal, kyber: bytes

class Vote:
id: int (PK)
voter id, election id, candidate id: int (FK)
encrypted vote: bytes (ElGamal chiffré)
ballot hash: str (SHA-256)
timestamp: datetime
ip address: str
blockchain tx id: str (optionnel)
UNIQUE(voter id, election id) « Double-vote protection

7.3 Endpoints API Principaux

POST /api/auth/register

e Entrée : email, password, first__name, last_name, citizen_ id

e Sortie : JWT token, voter id

o Actions : Hash password (berypt), Générer clés hybrides, Stocker BD

POST /api/auth/login

e Entrée : email, password

e Sortie : JWT token, expires_ in=1800

e Actions : Vérifier password, Signer JWT

GET /api/elections/active
¢ Requéte JWT
e Sortie : Liste élections (start <= now < end)

POST /api/votes/submit

o Entrée : election_id, encrypted_ vote, iv, signatures
¢ Requéte JWT

Sortie : vote_id, blockchain_tx_id

e Actions : 6 étapes vérification cryptographique

GET /api/elections/{id} /results
o Sortie : Résultats vote (aprés dépouillement)

GET /api/blockchain/votes
e Sortie : Chaine compléte pour audit

POST /api/blockchain /verify
e Entrée : Chaine
e Sortie : Validité, détails tampering

7.4 Processus Dépouillement

def tally election(election id, db):
for candidate in candidates:

votes = db.query(Vote).filter(
election_id = election_id,
candidate id = candidate.id

)

Homomorphic addition

encrypted total = votes[0].encrypted

for vote in votes[1l:]:
encrypted total *= vote.encrypted

Decrypt final avec clé trésorier
total = elgamal decrypt(encrypted total, sk)

results[candidate.id] = total

return results

8. Déploiement et Tests

8.1 Docker Compose
7 services orchestrés :

e MariaDB : Port 3306, volumes persistants
o Backend : Port 8000, dépend MariaDB

e Bootnode : Port 8546 (blockchain)

o Validatorl/2/3 : Ports 8001/8002/8003

o Frontend : Port 3000, dépend Backend

Déploiement :

docker-compose build
docker-compose up -d

Acces :

¢ Frontend : http://localhost:3000

o API Docs : http://localhost:8000/docs
e« DB : localhost:3306

8.2 Tests Unitaires

Test ElGamal roundtrip : m = decrypt(encrypt(m))

Test homomorphe : decrypt(E(ml) times E(m2)) = m1 + m2
Test Dilithium : Signature valide / invalide rejeté

Test Kyber : Encapsulation/décapsulation consistent

Test Hybrid : Clé finale = SHA256(kyber_ss || elgamal secret)

8.3 Tests d’Intégration

Workflow complet : Register — Login — Get elections — Vote — History
Double-vote protection : 2e vote rejeté avec 400 Bad Request

Blockchain integrity : Modification bloc — validation échoue

Signature verification : Signature invalide — vote rejeté

http://localhost:3000
http://localhost:8000/docs

9. Limitations et Perspectives

9.1 Limitations Actuelles

¢ Pas de Threshold Cryptography : Clé privée trésorier centralisée. Solution future : Shamir’s
Secret Sharing (k-of-n)

¢ PoA Simple : 3 validators seulement. Solution future : PoS / Hybrid consensus

o Pas de Vérification Client Etendue : Vérification basique du chiffrement seulement. Impact :
Serveur vérifie signature et format, mais pas contenu ballot

« Pas d’Attestation de Vote : Electeur ne recoit pas récépissé vérifiable. Raison : Anonymat =
impossible associer vote a électeur

9.2 Perspectives Futures (1-6 mois)

Court terme :

o Authentification multi-facteurs (2FA)
o Journalisation complete des acces

o Interface audit sécurisée

e Mobile app (i0S/Android)

Moyen terme :

o Déploiement multi-serveurs (résilience)
o Rapports d’audit détaillés

o Récépissé de vote imprimé

¢ Conformité CNIL/ANSSI standards

Long terme :

¢ Production deployment (élections réelles)
o Certification légale France

e Quantum simulation testing

Conclusion

Ce systeme de vote électronique démontre la faisabilité d’une architecture sécurisée combinant :
¢ Cryptographie post-quantique hybride (Dilithium, Kyber) conforme NIST FIPS 203/204

¢ Addition homomorphe ElGamal pour dépouillement sans révéler votes

¢ Blockchain Proof-of-Authority pour immuabilité et audit

o Defense-in-depth : Méme si une composante cassée, autres restent siires

e Propriétés formelles vérifiées : confidentialité, intégrité, non-répudiation

Contributions :

e Architecture compléte : Backend FastAPI + Frontend Next.js + Blockchain
¢ Implémentation robuste : 3000+ lignes cryptographie validée

o« Déploiement autonome : Docker Compose reproductible

¢ Documentation technique : Rapport détaillé explications formelles

Le systeéme est production-ready pour prototype/test électoral. Déploiement réel nécessiterait audit
sécurité indépendant et certification (CNIL/ANSSI).

	1. Introduction et Contexte
	1.1 Motivations Techniques
	1.2 Approche Hybride Post-Quantique
	1.3 Stack Technologique

	2. Architecture Système
	2.1 Composants Matériels
	2.2 Base de Données
	2.3 Blockchain PoA

	3. Cryptographie Hybride
	3.1 ElGamal : Addition Homomorphe
	3.2 Dilithium (ML-DSA-65)
	3.3 Kyber (ML-KEM-768)
	3.4 AES-256-GCM

	4. Flux du Vote (6 Phases)
	4.1 Phase 1 : Inscription
	4.2 Phase 2 : Authentification
	4.3 Phase 3 : Consultation Élections
	4.4 Phase 4 : Vote Chiffré
	4.5 Phase 5 : Dépouillement
	4.6 Phase 6 : Vérification Blockchain

	5. Sécurité Cryptographique
	5.1 Confidentialité (Semantic Security)
	5.2 Intégrité (EUF-CMA)
	5.3 Non-Répudiation
	5.4 Authentification
	5.5 Anonymat (Privacy)
	5.6 Protection Quantique

	6. Analyse des Menaces
	6.1 Fraude Électorale
	6.2 Double-Vote
	6.3 Intimidation
	6.4 Usurpation d'Identité
	6.5 Compromis BD
	6.6 Attaque Quantique

	7. Implémentation Détaillée
	7.1 Backend Architecture
	7.2 Database Models
	7.3 Endpoints API Principaux
	7.4 Processus Dépouillement

	8. Déploiement et Tests
	8.1 Docker Compose
	8.2 Tests Unitaires
	8.3 Tests d'Intégration

	9. Limitations et Perspectives
	9.1 Limitations Actuelles
	9.2 Perspectives Futures (1-6 mois)

	Conclusion

