Fix MLflow model logging warnings
Added input_example parameter to auto-infer model signature and explicitly set artifact_path parameter to remove deprecation warnings. This improves MLflow tracking by: - Auto-generating model signature from training data - Using correct parameter names for MLflow 3.x - Enabling better model serving and inference validation 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
22db96b3eb
commit
cb7b80ca6a
@ -137,7 +137,13 @@ def main():
|
|||||||
|
|
||||||
# Try to log model to MLflow (if permissions allow)
|
# Try to log model to MLflow (if permissions allow)
|
||||||
try:
|
try:
|
||||||
mlflow.sklearn.log_model(model, "model")
|
# Create input example for model signature
|
||||||
|
input_example = X_train.head(1)
|
||||||
|
mlflow.sklearn.log_model(
|
||||||
|
model,
|
||||||
|
artifact_path="model",
|
||||||
|
input_example=input_example
|
||||||
|
)
|
||||||
print("\nModel logged to MLflow successfully!")
|
print("\nModel logged to MLflow successfully!")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"\nWarning: Could not log model to MLflow: {e}")
|
print(f"\nWarning: Could not log model to MLflow: {e}")
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user