
Projet CS:GO Esports Intelligence Platform

Pipeline MLOps et Stratégie de Monitoring

Équipe : Paul Roost, Axelle Desthombes, Alexis
Bruneteau

Date : 2025-09-17

Dataset : CS:GO Professional Matches (Kaggle - 25K+ matches)
Objectif : Prédiction des résultats de matchs et optimisation des stratégies esports

1 Atelier 1 : Pipeline du Fil Rouge
1.1 Architecture Générale du Pipeline

� Data Sources
HLTV.org • Steam API

Tournament Feeds

� Data Lake
Amazon S3

Raw match results

⚡ Feature Store
Redis Cache

Real-time features

� Data Pipeline
Airflow + Spark

ETL • Feature Engineering

🔍 Quality Gates
Great Expectations

Schema • Drift Detection

🤖 Model Training
Multi-Target ML
Match Prediction

📊 Experiment Tracking
MLflow

Hyperparameter Tuning

📦 Model Registry
Model Store
A/B Testing

🔄 CI/CD Pipeline
Gitea Actions

Automated Testing

🚀 Model Serving
FastAPI + ECS
Real-time API

📈 Monitoring
Prometheus + Grafana

Model Performance

🚨 Alerting
PagerDuty + Slack
Performance Alerts

👥 End Users
Fantasy Sports

Betting Analytics

Figure 1: Architecture complète du pipeline MLOps CS:GO

1.2 Étapes Détaillées du Pipeline

1.2.1 Collecte et Ingestion des Données
Sources de données :
• HLTV.org : Résultats historiques, classements équipes

1

• Steam API : Données joueurs en temps réel
• Tournament APIs : Calendriers, formats de compétition

Pipeline d’ingestion automatisé avec Apache Airflow :

@dag(schedule_interval="@hourly", start_date=datetime(2024,1,1))
def csgo_data_ingestion():

 extract_hltv_matches = PythonOperator(
 task_id='extract_hltv',
 python_callable=scrape_hltv_matches
)

 validate_data = PythonOperator(
 task_id='validate_raw_data',
 python_callable=validate_match_schema
)

 store_s3 = PythonOperator(
 task_id='store_to_s3',
 python_callable=upload_to_s3
)

 extract_hltv_matches >> validate_data >> store_s3

1.2.2 Feature Engineering Multi-Niveaux

Catégorie Features
Team-level • recent_form_10_matches - Ratio W/L récent

• map_pool_strength - Win rate par map
• clutch_success_rate - Performance clutch
• eco_round_conversion - Gestion économique

Context • tournament_tier - Prestige de l’événement
• prize_pool_amount - Facteur de pression
• head_to_head_record - Historique direct
• current_game_patch - Version meta game

Live • current_score_difference - Score en cours
• momentum_last_5_rounds - Élan récent
• economy_advantage - Avantage économique

1.2.3 Entraînement Multi-Target
Architecture d’apprentissage multitâche avec PyTorch :

class CSGOPredictor(nn.Module):
 def __init__(self, input_dim):
 super().__init__()
 self.shared_layers = nn.Sequential(
 nn.Linear(input_dim, 256),
 nn.ReLU(),
 nn.Dropout(0.3),
 nn.Linear(256, 128)
)

 # Têtes spécialisées par tâche
 self.match_winner = nn.Linear(128, 2) # Classification binaire
 self.final_score = nn.Linear(128, 2) # Régression scores
 self.total_maps = nn.Linear(128, 4) # Nombre de maps

2

 def forward(self, x):
 shared_repr = self.shared_layers(x)
 return {
 'match_winner': self.match_winner(shared_repr),
 'final_score': self.final_score(shared_repr),
 'total_maps': self.total_maps(shared_repr)
 }

1.3 Automatisation et Points de Contrôle

1.3.1 Stratégie d’Automatisation

Étape Status Justification
Ingestion données AUTO Nouveaux matchs quotidiens, obsolescence rapide
Feature Engineering AUTO Features dépendent de données temps-réel
Model Retraining AUTO Meta game évolue (patches, transferts)
Deployment AUTO Évite erreurs humaines, rollback rapide
Model Selection MANUEL Décisions business complexes nécessitant expertise

1.3.2 Points de Contrôle Critiques
Validation des Données :

def validate_match_data(df):
 """Validation avant feature engineering"""
 checks = [
 ('schema_compliance', validate_schema(df)),
 ('completeness', check_missing_values(df, threshold=0.05)),
 ('consistency', validate_team_names(df)),
 ('freshness', check_data_age(df, max_hours=24)),
 ('volume', validate_daily_match_count(df, min_matches=50))
]

 for check_name, result in checks:
 if not result.passed:
 raise DataValidationError(f"{check_name} failed")

Validation des Performances :

def validate_model_performance(model, validation_data):
 """Validation avant déploiement"""
 metrics = evaluate_model(model, validation_data)

 # Seuils minimaux
 assert metrics['accuracy'] > 0.65, "Accuracy insuffisante"
 assert metrics['roi_betting'] > 1.05, "ROI non profitable"
 assert metrics['upset_detection'] > 0.20, "Détection upsets faible"

 return True

1.3.3 Difficultés Techniques et Solutions
Défi 1 : Concept Drift Extrême

Les mises à jour du jeu modifient significativement les stratégies et l’équilibre, ce qui peut rendre les
modèles existants moins performants.

Solution : Détection automatisée de drift + retraining d’urgence

3

def detect_meta_shift(recent_matches, baseline):
 """Détecte changements post-patch"""
 map_rates = calculate_map_win_rates(recent_matches)
 baseline_rates = baseline['map_win_rates']

 for map_name in map_rates:
 ks_stat, p_value = ks_2samp(map_rates[map_name],
 baseline_rates[map_name])
 if p_value < 0.01: # Drift significatif
 return True
 return False

Défi 2 : Cold Start Problem

Les nouvelles équipes ou changements de composition ne disposent pas d’historique suffisant pour
l’entraînement.

Solution : Transfer learning via embeddings joueurs

def handle_cold_start_team(roster, player_db):
 """Prédictions via similarité joueurs"""
 team_embedding = [player_db.get_embedding(p.id) for p in roster]
 similar_teams = find_similar_teams(team_embedding, top_k=5)
 return weighted_prediction_from_similar(similar_teams)

4

2 Atelier 2 : Expériences et Monitoring
2.1 Tracking des Expériences avec MLflow

2.1.1 Configuration et Logging Structuré
mlflow.set_tracking_uri("http://mlflow-server:5000")
mlflow.set_experiment("csgo-match-prediction")

def train_and_log_experiment(config):
 with mlflow.start_run(run_name=f"csgo-v{config.version}"):

 # Hyperparamètres
 mlflow.log_params({
 "model_type": config.model_type,
 "learning_rate": config.lr,
 "batch_size": config.batch_size,
 "data_version": config.data_version
 })

 # Métriques par époque
 for epoch in range(config.epochs):
 train_loss = train_one_epoch(model, train_loader)
 val_metrics = evaluate_model(model, val_loader)

 mlflow.log_metrics({
 "train_loss": train_loss,
 "val_accuracy": val_metrics['accuracy'],
 "betting_roi": val_metrics['roi'],
 "upset_detection": val_metrics['upset_rate']
 }, step=epoch)

 # Artefacts finaux
 mlflow.pytorch.log_model(model, "model")
 mlflow.log_artifacts("evaluation_plots/")

2.1.2 Métriques Trackées

Catégorie Métriques
Performance ML • Accuracy, Precision, Recall, F1-Score

• ROC-AUC, Calibration Error
• Performance par segment (tier tournoi)

Business • ROI betting, Profit/Loss
• Sharpe Ratio, Upset Detection Rate
• User Engagement, Revenue Impact

Computational • Training Time, Inference Latency
• Model Size, Memory Usage
• API Response Time

2.2 Stratégie de Monitoring Complète

2.2.1 Métriques de Surveillance Multi-Niveaux
Surveillance de la qualité des données :

class DataMonitoring:
 def monitor_data_quality(self, new_batch):
 metrics = {}

5

 # Volume et couverture
 metrics['daily_match_count'] = len(new_batch)
 metrics['team_coverage'] = new_batch['team_name'].nunique()

 # Qualité
 metrics['missing_rate'] = new_batch.isnull().mean().mean()
 metrics['duplicates'] = new_batch.duplicated().sum()

 # Drift distribution
 for col in ['team_ranking', 'match_duration']:
 drift = calculate_drift_score(new_batch[col], baseline[col])
 metrics[f'{col}_drift'] = drift

 return metrics

Model Performance Monitoring :

def monitor_model_performance(predictions, actuals):
 """Monitoring performance temps-réel"""
 rolling_metrics = {}

 # Fenêtres glissantes
 for window in [1, 7, 30]: # jours
 recent = get_recent_data(window)
 rolling_metrics[f'accuracy_{window}d'] = accuracy_score(
 recent['actual'], recent['predicted']
)
 rolling_metrics[f'roi_{window}d'] = calculate_roi(
 recent['predictions'], recent['outcomes']
)

 return rolling_metrics

2.2.2 Système d’Alertes Intelligent

Sévérité Seuils Actions
CRITIQUE • Accuracy 7j < 60%

• ROI 7j < 100%
• API errors > 5%

• PagerDuty + Slack
• Email équipe oncall
• Rollback automatique

WARNING • Accuracy trending ↓
• Concept drift p<0.05
• Latency > 300ms

• Slack #alerts
• Email ML team
• Investigation requise

INFO • Nouveaux tournaments
• Performance updates
• System health

• Slack #monitoring
• Dashboard updates

2.2.3 Dashboards et Rapports
Dashboard Temps-Réel (Grafana) :

• Model Performance : Accuracy, ROI, Calibration trends
• Data Pipeline Health : Volume, freshness, quality scores
• API Performance : Latency P95, request rate, error rate
• Business Metrics : Revenue impact, user engagement

Rapports Hebdomadaires Automatisés :

class WeeklyReportGenerator:
 def generate_performance_report(self, week_start, week_end):

6

 sections = [
 self.executive_summary(), # KPIs clés
 self.model_performance(), # Analyse détaillée
 self.business_impact(), # Valeur générée
 self.technical_health(), # Infrastructure
 self.recommendations() # Actions recommandées
]
 return self.compile_html_report(sections)

2.3 Architecture de Monitoring Production

2.3.1 Alerting Multi-Canal
class AlertManager:
 def __init__(self):
 self.channels = {
 'slack': SlackNotifier(SLACK_WEBHOOK),
 'email': EmailNotifier(EMAIL_CONFIG),
 'pagerduty': PagerDutyNotifier(PAGERDUTY_KEY)
 }

 def send_alert(self, alert):
 if alert['severity'] == 'CRITICAL':
 // Alertes critiques sur tous les canaux
 self.channels['pagerduty'].send(alert)
 self.channels['slack'].send_critical(alert)
 self.channels['email'].send_oncall(alert)
 elif alert['severity'] == 'WARNING':
 // Warnings vers Slack et email
 self.channels['slack'].send_warning(alert)
 self.channels['email'].send_team(alert)

2.3.2 Runbooks d’Incident
Alerte Critique : Accuracy < 60%

1. Actions Immédiates (0-15min)
• Vérifier qualité des données récentes
• Identifier changements meta/tournois
• Rollback si accuracy < 55%

2. Investigation (15-60min)
• Analyse drift sur données récentes
• Comparaison prédictions vs résultats
• Validation pipeline features

3. Résolution (1-4h)
• Retraining d’urgence si drift détecté
• Fix pipeline si problème data quality
• Rollback si problème infrastructure

3 Conclusion
L’architecture MLOps développée pour ce projet CS:GO présente plusieurs caractéristiques importantes :

Architecture de production robuste :
• Apprentissage multi-tâches permettant des prédictions variées selon les besoins métier
• Service en temps réel respectant les contraintes de latence
• Gestion de la dérive conceptuelle liée à l’évolution du meta-jeu
• Surveillance complète des données, modèles et métriques business

7

Mesure de la valeur métier :
• Suivi du retour sur investissement pour les applications de paris et fantasy leagues
• Métriques d’engagement utilisateur pour optimiser la rétention
• Impact sur le chiffre d’affaires pour justifier les investissements

Fiabilité opérationnelle :
• Retour en arrière automatique en cas de dégradation des performances
• Système d’alertes multi-canaux pour une réaction rapide
• Procédures documentées pour la résolution d’incidents
• Plan de continuité d’activité pour les événements critiques

Ce travail démontre l’application des principes MLOps modernes à un domaine spécialisé, en mettant
l’accent sur la création de valeur métier et la fiabilité opérationnelle.

Équipe MLOps - Projet CS:GO Intelligence Platform

8

	Atelier 1 : Pipeline du Fil Rouge
	Architecture Générale du Pipeline
	Étapes Détaillées du Pipeline
	Collecte et Ingestion des Données
	Feature Engineering Multi-Niveaux
	Entraînement Multi-Target

	Automatisation et Points de Contrôle
	Stratégie d'Automatisation
	Points de Contrôle Critiques
	Difficultés Techniques et Solutions

	Atelier 2 : Expériences et Monitoring
	Tracking des Expériences avec MLflow
	Configuration et Logging Structuré
	Métriques Trackées

	Stratégie de Monitoring Complète
	Métriques de Surveillance Multi-Niveaux
	Système d'Alertes Intelligent
	Dashboards et Rapports

	Architecture de Monitoring Production
	Alerting Multi-Canal
	Runbooks d'Incident

	Conclusion

