Projet CS:GO Esports Intelligence Platform

Pipeline MLOps et Stratégie de Monitoring

Equipe : Paul Roost, Axelle Desthombes, Alexis Date : 2025-09-17
Bruneteau

Dataset : CS:GO Professional Matches (Kaggle - 25K+ matches)
Objectif : Prédiction des résultats de matchs et optimisation des stratégies esports

1 Atelier 1: Pipeline du Fil Rouge

1.1 Architecture Générale du Pipeline

Figure 1: Architecture compléte du pipeline MLOps CS:GO

1.2 Etapes Détaillées du Pipeline

1.2.1 Collecte et Ingestion des Données

Sources de données :
« HLTV.org : Résultats historiques, classements équipes

» Steam API : Données joueurs en temps réel
« Tournament APIs : Calendriers, formats de compétition

Pipeline d’ingestion automatisé avec Apache Airflow :
@dag(schedule _interval="@hourly", start date=datetime(2024,1,1))

def csgo data ingestion():

extract hltv_matches = PythonOperator(
task id='extract hltv',
python callable=scrape_hltv_matches

validate data = PythonOperator(
task id='validate raw data',
python callable=validate match schema

store s3 = PythonOperator(
task id='store to s3',
python callable=upload to s3

extract_hltv_matches >> validate data >> store s3

1.2.2 Feature Engineering Multi-Niveaux

Catégorie Features

Team-level « recent_form 10 matches - Ratio W/L récent
« map_pool_strength - Win rate par map

« clutch_success_rate - Performance clutch

« eco_round_conversion - Gestion économique

Context « tournament_tier - Prestige de I’événement
« prize pool_amount - Facteur de pression
« head_to_head_record - Historique direct
« current_game_patch - Version meta game

Live e current _score difference - Score en cours
« momentum last 5 rounds - Elan récent
» economy_advantage - Avantage économique

1.2.3 Entrainement Multi-Target
Architecture d’apprentissage multitiche avec PyTorch :

class CSGOPredictor(nn.Module):
def init (self, input dim):

super(). init ()

self.shared layers = nn.Sequential(
nn.Linear(input_dim, 256),
nn.RelLU(),
nn.Dropout(0.3),
nn.Linear (256, 128)

Tétes spécialisées par tache

self.match _winner = nn.Linear (128, 2) # Classification binaire
self.final score = nn.Linear(128, 2) # Régression scores
self.total maps = nn.Linear(128, 4) # Nombre de maps

def forward(self, x):

shared repr = self.shared layers(x)

return {

‘match winner': self.match winner(shared repr),
"final score': self.final score(shared repr),
"total maps': self.total maps(shared repr)

}

1.3 Automatisation et Points de Controle

1.3.1 Stratégie d’Automatisation

Etape Status Justification

Ingestion données AUTO Nouveaux matchs quotidiens, obsolescence rapide
Feature Engineering AUTO Features dépendent de données temps-réel

Model Retraining AUTO Meta game évolue (patches, transferts)
Deployment AUTO Evite erreurs humaines, rollback rapide

Model Selection MANUEL Décisions business complexes nécessitant expertise

1.3.2 Points de Contrdle Critiques

Validation des Données :

def validate match data(df):
"""Validation avant feature engineering

checks = [

('schema compliance', validate schema(df)),
('completeness', check missing values(df, threshold=0.05)),
('consistency', validate team names(df)),

('freshness', check data age(df, max_hours=24)),

('volume', validate daily match count(df, min_matches=50))

for check_name, result in checks:

if not result.passed:

raise DataValidationError(f"{check name} failed")

Validation des Performances :

def validate model performance(model, validation data):
"""Validation avant déploiement"""
metrics = evaluate model(model, validation data)

Seuils minimaux

assert metrics['accuracy'] > 0.65, "Accuracy insuffisante"

assert metrics['roi betting'] > 1.05,

"ROI non profitable"

assert metrics['upset detection'] > 0.20, "Détection upsets faible"

return True

1.3.3 Difficultés Techniques et Solutions

Défi 1: Concept Drift Extréme

Les mises a jour du jeu modifient significativement les stratégies et I’équilibre, ce qui peut rendre les
modéles existants moins performants.

Solution : Détection automatisée de drift + retraining d’urgence

def detect meta shift(recent matches, baseline):
"""Détecte changements post-patch"""
map_rates = calculate map win rates(recent matches)
baseline rates = baseline['map win rates']

for map_name in map rates:
ks _stat, p_value = ks 2samp(map_rates[map name],
baseline rates[map_name])
if p value < 0.01: # Drift significatif
return True
return False

Défi 2 : Cold Start Problem

Les nouvelles équipes ou changements de composition ne disposent pas d’historique suffisant pour
Ientrainement.

Solution : Transfer learning via embeddings joueurs

def handle cold start team(roster, player db):
"""Prédictions via similarité joueurs"""
team_embedding = [player_db.get embedding(p.id) for p in roster]
similar teams = find similar teams(team embedding, top k=5)
return weighted prediction from similar(similar_teams)

2 Atelier 2 : Expériences et Monitoring
2.1 Tracking des Expériences avec MLflow

2.1.1 Configuration et Logging Structuré

mlflow.set tracking uri("http://mlflow-server:5000")
mlflow.set experiment("csgo-match-prediction")

def train and log experiment(config):
with mlflow.start run(run_name=f"csgo-v{config.version}"):

Hyperparamétres

mlflow.log params({
"model type": config.model type,
"learning rate": config.lr,
"batch size": config.batch size,
"data version": config.data version

}

Métriques par époque

for epoch in range(config.epochs):
train_loss = train one epoch(model, train_loader)
val metrics = evaluate model(model, val loader)

mlflow.log metrics({
"train loss": train loss,
"val accuracy": val metrics['accuracy'],
"betting roi": val metrics['roi'l],
"upset detection": val metrics['upset rate']
}, step=epoch)

Artefacts finaux
mlflow.pytorch.log model(model, "model")
mlflow.log artifacts("evaluation plots/")

2.1.2 Métriques Trackées

Catégorie Métriques

Performance ML « Accuracy, Precision, Recall, F1-Score
« ROC-AUC, Calibration Error
« Performance par segment (tier tournoi)

Business « ROI betting, Profit/Loss
« Sharpe Ratio, Upset Detection Rate
« User Engagement, Revenue Impact

Computational « Training Time, Inference Latency
+ Model Size, Memory Usage
« API Response Time

2.2 Stratégie de Monitoring Compleéte

2.2.1 Métriques de Surveillance Multi-Niveaux
Surveillance de la qualité des données :
class DataMonitoring:

def monitor data quality(self, new_batch):
metrics = {}

Volume et couverture
metrics['daily match count'] = len(new batch)
metrics['team coverage'] = new_batch['team name'].nunique()

Qualité
metrics['missing rate'] = new _batch.isnull().mean().mean()
metrics['duplicates'] = new_batch.duplicated().sum()

Drift distribution
for col in ['team_ranking', 'match _duration']:

drift = calculate drift score(new_batch[col], baseline[col])

metrics[f'{col} drift'] = drift

return metrics
Model Performance Monitoring :

def monitor model performance(predictions, actuals):
"""Monitoring performance temps-réel"""
rolling metrics = {}

Fenétres glissantes
for window in [1, 7, 30]: # jours
recent = get recent data(window)
rolling metrics[f'accuracy {window}d'] = accuracy score(
recent['actual'], recent['predicted']
)
rolling metrics[f'roi {window}d'] = calculate roi(
recent['predictions'], recent['outcomes']

)
return rolling metrics

2.2.2 Systeme d’Alertes Intelligent

Sévérité Seuils Actions
CRITIQUE « Accuracy 7j < 60% « PagerDuty + Slack

+ROI 7j < 100% + Email équipe oncall

« API errors > 5% « Rollback automatique
WARNING « Accuracy trending | « Slack #alerts

« Concept drift p<0.05 + Email ML team

« Latency > 300ms « Investigation requise
INFO » Nouveaux tournaments « Slack #monitoring

« Performance updates « Dashboard updates

« System health

2.2.3 Dashboards et Rapports
Dashboard Temps-Réel (Grafana) :

« Model Performance : Accuracy, ROI, Calibration trends
« Data Pipeline Health : Volume, freshness, quality scores
« API Performance : Latency P95, request rate, error rate
« Business Metrics : Revenue impact, user engagement

Rapports Hebdomadaires Automatisés :

class WeeklyReportGenerator:
def generate performance report(self, week start, week end):

sections = [

self.executive summary(), # KPIs clés

self.model performance(), # Analyse détaillée
self.business impact(), # Valeur générée
self.technical health(), # Infrastructure
self.recommendations() # Actions recommandées

]

return self.compile html report(sections)

2.3 Architecture de Monitoring Production

2.3.1 Alerting Multi-Canal

class AlertManager:
def init (self):
self.channels = {
"slack': SlackNotifier(SLACK WEBHOOK),
‘email': EmailNotifier(EMAIL_CONFIG),
"pagerduty': PagerDutyNotifier (PAGERDUTY KEY)
}

def send alert(self, alert):

if alert['severity'] == 'CRITICAL':
// Alertes critiques sur tous les canaux
self.channels['pagerduty'].send(alert)
self.channels['slack'].send critical(alert)
self.channels['email'].send oncall(alert)

elif alert['severity'] == 'WARNING':
// Warnings vers Slack et email
self.channels['slack'].send warning(alert)
self.channels['email'].send team(alert)

2.3.2 Runbooks d’Incident
Alerte Critique : Accuracy < 60%

1. Actions Immédiates (0-15min)
« Vérifier qualité des données récentes
« Identifier changements meta/tournois
« Rollback si accuracy < 55%

2. Investigation (15-60min)
« Analyse drift sur données récentes
« Comparaison prédictions vs résultats
« Validation pipeline features

3. Résolution (1-4h)
« Retraining d’urgence si drift détecté
« Fix pipeline si probléme data quality
« Rollback si probléme infrastructure

3 Conclusion

L’architecture MLOps développée pour ce projet CS:GO présente plusieurs caractéristiques importantes :

Architecture de production robuste :

« Apprentissage multi-taches permettant des prédictions variées selon les besoins métier
« Service en temps réel respectant les contraintes de latence

« Gestion de la dérive conceptuelle liée a I’évolution du meta-jeu

« Surveillance compléte des données, modeéles et métriques business

Mesure de la valeur métier :

« Suivi du retour sur investissement pour les applications de paris et fantasy leagues
« Métriques d’engagement utilisateur pour optimiser la rétention

« Impact sur le chiffre d’affaires pour justifier les investissements

Fiabilité opérationnelle :

« Retour en arriére automatique en cas de dégradation des performances
« Systeme d’alertes multi-canaux pour une réaction rapide

 Procédures documentées pour la résolution d’incidents

+ Plan de continuité d’activité pour les événements critiques

Ce travail démontre I’application des principes MLOps modernes a un domaine spécialisé, en mettant
l'accent sur la création de valeur métier et la fiabilité opérationnelle.

Equipe MLOps - Projet CS:GO Intelligence Platform

	Atelier 1 : Pipeline du Fil Rouge
	Architecture Générale du Pipeline
	Étapes Détaillées du Pipeline
	Collecte et Ingestion des Données
	Feature Engineering Multi-Niveaux
	Entraînement Multi-Target

	Automatisation et Points de Contrôle
	Stratégie d'Automatisation
	Points de Contrôle Critiques
	Difficultés Techniques et Solutions

	Atelier 2 : Expériences et Monitoring
	Tracking des Expériences avec MLflow
	Configuration et Logging Structuré
	Métriques Trackées

	Stratégie de Monitoring Complète
	Métriques de Surveillance Multi-Niveaux
	Système d'Alertes Intelligent
	Dashboards et Rapports

	Architecture de Monitoring Production
	Alerting Multi-Canal
	Runbooks d'Incident

	Conclusion

