Alexis Bruneteau 9440f4eecd Implement multi-task learning pipeline for CSGO predictions
Created comprehensive multi-objective modeling system:

**6 Prediction Tasks:**
1. Match Winner (Binary Classification) - Who wins the match?
2. Map Winner (Binary Classification) - Who wins this specific map?
3. Team 1 Score (Regression) - Predict exact round score for team 1
4. Team 2 Score (Regression) - Predict exact round score for team 2
5. Round Difference (Regression) - Predict score margin
6. Total Maps (Regression) - Predict number of maps in match

**Implementation:**
- Updated preprocessing to generate all target variables
- Created train_multitask.py with separate models per task
- Classification tasks use Random Forest Classifier
- Regression tasks use Random Forest Regressor
- All models logged to MLflow experiment 'csgo-match-prediction-multitask'
- Metrics tracked per task (accuracy/precision for classification, MAE/RMSE for regression)
- Updated DVC pipeline to use new training script

**No Data Leakage:**
- All features are pre-match only (rankings, map, starting side)
- Target variables properly separated and saved with 'target_' prefix

This enables comprehensive match analysis and multiple betting/analytics use cases.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-01 20:28:06 +02:00
2025-09-30 17:03:15 +02:00
2025-09-30 17:03:15 +02:00
2025-10-01 17:35:13 +02:00
2025-10-01 15:04:13 +02:00
2025-09-30 17:04:43 +02:00
2025-09-30 16:38:14 +02:00
2025-09-30 15:48:38 +02:00
2025-10-01 15:04:13 +02:00

MLOps Project

This is an MLOps project for CSGO data analysis and model training.

Features

  • Data pipeline with Apache Airflow
  • Model training with PyTorch and scikit-learn
  • MLflow for experiment tracking
  • DVC for data versioning
  • Monitoring with Prometheus
  • FastAPI for API serving

Setup

  1. Install dependencies:

    poetry install
    
  2. Run the data pipeline:

    airflow dags unpause csgo_data_pipeline
    

Project Structure

  • dags/: Airflow DAGs
  • src/: Source code
  • models/: Trained models
  • data/: Data files
  • notebooks/: Jupyter notebooks
  • tests/: Test files
  • config/: Configuration files
  • docker/: Docker files
  • kubernetes/: Kubernetes manifests
Description
No description provided
Readme 350 KiB
Languages
Python 73.3%
Typst 25.9%
Dockerfile 0.8%