Added explicit environment variable configuration for MLflow credentials. The credentials are now properly passed through from CI/CD environment to the MLflow client. Changes: - Check for MLFLOW_TRACKING_USERNAME and MLFLOW_TRACKING_PASSWORD env vars - Explicitly set them in os.environ for MLflow to use - Added connection success message for debugging 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
MLOps Project
This is an MLOps project for CSGO data analysis and model training.
Features
- Data pipeline with Apache Airflow
- Model training with PyTorch and scikit-learn
- MLflow for experiment tracking
- DVC for data versioning
- Monitoring with Prometheus
- FastAPI for API serving
Setup
-
Install dependencies:
poetry install -
Run the data pipeline:
airflow dags unpause csgo_data_pipeline
Project Structure
dags/: Airflow DAGssrc/: Source codemodels/: Trained modelsdata/: Data filesnotebooks/: Jupyter notebookstests/: Test filesconfig/: Configuration filesdocker/: Docker fileskubernetes/: Kubernetes manifests
Description
Languages
Python
73.3%
Typst
25.9%
Dockerfile
0.8%